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ABSTRACT 

A Bayesian optimal experimental design (OED) method is proposed in this work for estimating the best 
locations of sensors in structures so that the measured data are most informative for estimating reliably 
the structural modes. The information contained in the data is measured by the Kullback-Leibler (K-L) 
divergence between the prior and posterior distribution of the model parameters taken in modal 
identification to be the modal coordinates. The optimal sensor placement that maximizes the expected K-
L divergence is shown also to minimize the information entropy of the posterior distribution. 
Unidentifiability issues observed in existing formulations when the number of sensors is less than the 
number of identified modes, are resolved using a non-uniform prior in the Bayesian OED. An insightful 
analysis is presented that demonstrates the effect of the variances of Bayesian priors on the optimal design. 
For dense mesh finite element models, sensor clustering phenomena are avoided by integrating in the 
methodology spatially correlated prediction error models. A heuristic forward sequential sensor placement 
algorithm and a stochastic optimization algorithm are used to solve the optimization problem in the 
continuous physical domain of variation of the sensor locations. The theoretical developments and 
algorithms are applied for the optimal sensor placement design along the deck of a 537 m concrete bridge. 

 

KEYWORDS: Bayesian inference, Kullback-Leibler divergence, information entropy, structural 
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1. INTRODUCTION  

Experimental measurements from civil infrastructures, including buildings, bridges, offshore structures, 
wind turbines, industrial facilities, are often used to obtain the modes of these structures. The modes are 
useful in structural performance evaluation [1], finite element model updating [2-4] and model-based 
structural health monitoring [5, 6]. A number of methodologies have been developed in the past to 
optimize the location of sensors in order to maximize the information contained in the measurements for 
identifying the structural modes. Among them, methods based on information theory are used to make 
rational decisions consistent with the information provided by the measurements. Non-information based 
methods have also been developed. A review of a number of non-information based methods can by found 
in [7].  

This work concentrates on optimal sensor placement design methods for modal identification based on 
information theory. In the past, notable contributions to the sensor placement problem for modal 
identification have been provided by the effective independence (EFI) method [8] for uni-axial  and triaxial 
sensors [9, 10]. Information theory measures, based on scalar measures of the Fisher information matrix 
(FIM) [11, 12] and on information entropy [13-15], proposed in the past for structural parameter estimation 
problems, have been extended to be used for modal identification [16] as well. An optimal sensor 
placement design for modal identification based on FIM was proposed in Kammer [17]. The information 
entropy measure for parameter estimation introduced in [13], was extended in [18] to obtain useful 
expressions of the information entropy as a function of the number of sensors, and was applied to modal 
identification problems in [16]. In particular, the information entropy measures the uncertainty in the 
posterior distribution of the model parameters to be identified. The posterior distribution is obtained from 
a Bayesian analysis that makes use of the prior distribution of the model parameters. Up to now, the effect 
of the prior distribution in the optimal design has not been adequately explored.  

Applying the EFI and information entropy techniques to dense finite element models, the problem of 
sensor clustering is manifested. The source of the problem is the failure to take into account the redundant 
information provided from neighborhood sensor locations. The problem was adequately resolved using 
spatially correlated prediction error models in the Bayesian formulation to exclude redundant information 
from neighboring sensors [16]. Stephan [19] has also effectively tackled the issue of information 
redundancy between sensors by introducing a measure of information redundancy.  

Optimization algorithms have also been proposed to find the optimal sensor locations. For structural 
parameter estimation problems multiple local/global optima make the solution of the optimization problem 
very challenging [20]. Heuristic algorithms such as the backward and forward sequential sensor placement 
(BSSP and FSSP) algorithms have been proposed to drastically reduce the computational effort [17, 18]. 
The optimal sensor placement strategies based on the information entropy and FSSP was applied to bridge, 
towers and timber structures for optimizing the location of uniaxial and triaxial sensors [21-23]. These 
algorithms are shown to be quite accurate. However, the use of the FSSP algorithm require that 
identifiability issues are resolved for small number of sensors. Unidentifiability issues arise from the 
aforementioned methods for modal identification when the number of sensors placed in the structure is 
less than the number of identified modes. This is due to the fact that the FIM becomes singular. Yuen and 
Kuok [24] noted that introducing non-uniform priors in the Bayesian posterior used in the information 
entropy measures resolves the problem. For uniform priors, Papadimitriou and Lombaert [16] obtained 
reasonable sensor placement design by excluding the zero eigenvalues from the product of the eigenvalues 
of the FIM used for computing the determinant of the FIM that is required in information entropy 
formulations.  
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In this work we revisit the problem of sensor placement for modal identification. We formulate the optimal 
experimental design based on expected utility functions [25] and apply it to the case of optimizing the 
location of sensors for a real bridge. We use as utility function the relative entropy or, equivalently, the 
Kullback-Leibler divergence between the prior and the posterior distribution of model parameters [26]. 
For uniform or Gaussian priors and for models for which the output quantities of interest (QoI) depends 
linearly on the model parameters to be identified, as it is the case of modal identification, we demonstrate 
that the expected utility function is directly related to the minus of the information entropy of the 
parameters to be estimated plus a constant that does not depend on the sensor location. Thus the optimal 
design results in maximizing the expected log determinant of the sum of the FIM and the prior Hessian. 
As a result, with the aid of the information contained in the prior PDF of the model parameters, the 
combined matrix (FIM and prior Hessian) is non-singular for non-uniform priors and the optimal sensor 
placement problem can be carried out also for the case where the number of sensors is less than the number 
of modes.  

One of the novelty in this work is to study the effect of Gaussian prior uncertainties on the optimal sensor 
design. For this, an insightful analytical expression is developed that show the effect the prior uncertainties 
have on the optimal design. The importance of spatial correlation in the prediction error is also pointed 
out as the means of avoiding sensor clustering phenomena for finite element models used to simulate civil 
infrastructures.  

Theoretical developments are demonstrated by designing the optimal locations of a number of sensors for 
a 537m long concrete bridge using a dense finite element mesh of approximately 830000 degrees of 
freedom (DOF). The optimization is formulated in the physical continuous space of design variable. This 
avoids the large discrete design space that arise from the extremely large number of possible nodal 
positions due to dense FE meshes. Multiple local optima are revealed that make the optimization problem 
very challenging. It is demonstrated that the computationally efficient heuristic FSSP algorithm provides 
accurate solutions when compared to stochastic algorithms such as the covariance matrix adaptation 
(CMA-ES) [27] able to estimate the global optimum with substantially higher computational cost. Useful 
results are obtained which help guide experimentalists as to how the proposed method can be used for 
designing the optimal sensor locations in practical applications. In particular, we demonstrate that designs 
are also obtained for the very important case of number of sensors which are less than the number of 
modes by using the information contained in the prior distribution. In particular, this is important in 
designing the location of the reference sensors in a multiple sensor configuration set up experiment 
conducted with limited number of reference and roving sensors in order to obtain the modal frequencies 
and reliably assemble the mode shapes from multiple setups. The effectiveness of the methodology is 
illustrated by designing the optimal location of two reference sensors (one transverse and one vertical) for 
the bridge. Finally, we draw attention to the sensor clustering issue and propose methods to avoid it and 
finally we show the effect of uncertainty in the prior distribution on the sensor placement designs. 

2. BAYESIAN PARAMETER ESTIMATION 

The Bayesian framework for the estimation of the parameters of finite element models of structures based 
on experimental data is first outlined and the results are used in the optimal experimental design 

formulation presented in Section 3. Consider a model of a structural system and let 
NR    be the vector 

of model parameters to be estimated using a set of measured data 0( ) Ny y R   of output quantities that 

depend on experimental design variables  , where 0N  is the number of sensors. Let 
0( ; ) ( ) Ng A R      be the vector of the values of the output quantities predicted by a structural model 
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for specific values of the parameter set  , where it is assumed that there is a linear relationship between 
the output quantity of interest (QoI) and the parameter set   to be identified from the experiments, and 

( ) N NA R    depends on the structure of the model and the experimental design variables  . The design 
variables are related to the location of sensors placed in a structure. The location vector   contains the 
coordinates of the sensors with respect to a coordinate system.  

The following prediction error equation is introduced to model the discrepancy between the measurements 
and the model predictions 

 ( ; ) ( )y g e A e         (1) 

where e  is the additive prediction error term due to model and measurement error. The prediction error 
e  is usually modeled as a Gaussian vector, whose mean value is equal to zero and its covariance is equal 

to 0 0( ; ) N NR    , where   contains the parameters that define the correlation structure ( ; )   of the 
prediction error. Applying Bayesian theorem [2], the posterior probability density function (PDF) of the 
model parameter set  , given the measured data y , takes the form  

 
   0 1/2/2

1 1
( | , , ) exp ( ; , , )  ( )

22 det ( ; )
N

p y c J y       
  

    
  (2) 

where 

 1( ; , , ) [ ( ) ] ( ; )[ ( ) ]TJ y y A y A              (3) 

quantifies the discrepancy between the measured and model predicted quantities, ( )   is the prior 
distribution for  , and c  is a normalization constant guaranteeing that the posterior PDF integrates to one.  

Due to the linear relationship between the output QoI and the model parameters, the function ( ; , , )J y    

is quadratic in  . Assuming a uniform prior with wide enough bounds or a Gaussian prior, the posterior 

PDF for the model parameters   is Gaussian, denoted by ˆ( ; , )N C  , where ˆ ˆ( ; , )y     is the most 

probable value obtained by minimizing the function ln ( | , , )p y   , i.e.  

 ˆ( ; , ) arg min[ ( ; , , ) ln ( )]y J y


          (4) 

and the covariance matrix ˆ( ; , , )C C y     equals to the inverse of the Hessian of ln ( | , , )p y   , i.e.  

 1( ; , , ) [ ln ( | , , )] ( , )T
LC y p y Q Q                 (5) 

evaluated at the most probable value ˆ( ; , )y   , where ( , )LQ    is the FIM obtained from  

 11
( , ) ( ; , , ) ( ) ( ; ) ( )

2
T T

LQ J y A A               (6) 
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to be independent of   and the experimental values y , and ( ) [ ln ( )]TQ         is the zero matrix 

0Q   for uniform prior and the constant matrix 1Q S
  for a Gaussian prior PDF with covariance 

matrix S .  The covariance matrix C  of the Gaussian posterior PDF does not depend on the values of the 
parameters   and the experimental data y . The dependence on the experimental design variables   

comes from the information matrix ( , )LQ   .  

3. BAYESIAN OPTIMAL EXPERIMENTAL DESIGN 

3.1 Expected Utility Function 

The expected utility function has been introduced by Lindley [25] to measure the information contained 
in the experimental data for estimating the parameters of the model. The expected utility function has the 
form  

 ( ) ( ; , , ) ( , , | )   U u y p y d dy d        
  

      (7) 

where ( ; , , )u y    is the utility function given a particular value of the model parameter set  , the 

outcome y  from the experiment, and the parameter set  , 

( , , | ) ( | , , ) ( | , ) ( | )p y p y p y p          , ( | , , )p y    is the posterior uncertainty in the model 

parameters given the outcome y , ( | , )p y    is the uncertainty in the data, and ( | ) ( )p      quantifies 

the prior uncertainty in the parameter set  . Herein, the expected utility function in (7) has been extended 
to include the uncertainties in the model prediction error parameters   by taking the expectation over the 
parameter space   as well.  

Based on information theory, the utility function can be chosen to be the relative entropy or the Kullback-
Leibler divergence [25, 26] 

 
( | , , )

( ; , , ) ( | , , ) ln 
( )

p y
u y p y

  
     

 
   (8) 

between the prior and posterior PDF of the model parameters   given an outcome y  obtained from an 

experimental design  . Substituting (8) into (7), one has that the expected utility function is an average 
of the K-L divergence over all possible values of the model parameters   as they are inferred from the 
data, all the possible outcomes y   of the experiment, and all possible values of the model prediction error 

parameters  . For Gaussian posterior PDF in   that does not depend on the data y , the inner double 

integral in the expected utility function simplifies considerable [28] and the expected utility function takes 
the form  

 ( ) ( , ) ( ) U H d c          (9) 

where  
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 11 1
( , ) [ln(2 ) 1] ln det[ ( ; ) ]

2 2 LH N Q S           (10) 

is the information entropy of the model parameters   given  , while c  is a quantity that does not depend 
on the design variables   so that can be treated as constant. This integral in the right-hand-side of (9) 
represents the robust measure of the information entropy over all possible values of the prediction error 
parameters quantified by the prior PDF ( )  . For a small number (one or two) of parameters in  , the 
integral can be carried out using a numerical integration algorithm. For the sake of simplicity, in this work 
the values of   are assumed known (deterministic). The utility function then takes the form 

 ( ) ( , )U H c       (11) 

It can be seen that the expected relative information or expected K-L divergence has a direct connection 
to the robust information entropy proposed by Papadimitriou et al. [13] and extended by Yuen and Kuok 
[24] for non-uniform distributions.  

3.2 Optimal Designs 

The optimal experimental design is formulated as finding the values opt  of the design variables   the 

maximize the utility function ( )U   or, equivalently, minimizes the information entropy ( , )H   , i.e.  

 arg max ( ) arg min ( , )opt U H
 

      (12) 

Optimal experimental design problems involving the design of the position of sensors often results in 
multiple local and global solutions. This will be also evident in the results presented in the application 
section. Also the gradient of the objective function with respect to the design variables in most cases of 
practical interest cannot be evaluated analytically. To avoid premature convergence to a local optimum 
and the evaluation of sensitivities of the utility function with respect to the design variables, stochastic 
optimization algorithms can be used to find the optimum. Herein the CMA-ES algorithm [27] is used for 
solving the optimization problem, requiring only evaluation of the objective function at different values 
of the design variables. For this, the problem is formulated as a continuous optimization problem where 
the design variables are related to the coordinates of the sensors along the physical domain of the structure. 
To account, however, of curved and disconnected one-dimensional or two-dimensional domains, as well 
as to take into account the different type of sensors (vertical or transverse) that can be placed along the 
curved domain, a mapping technique can be used to map the physical design space into a regular one-
dimensional parent domain. The optimization is then conveniently carried out in the parent domain. The 
method will be illustrated for one-dimensional curved domains in the application section.   

Heuristic algorithms have also been proposed to provide sub-optimal solutions. Notable are the forward 
and backward sequential sensor placement algorithms (FSSP and BSSP) in which the optimization is 
carried out sequentially. In the FSSP algorithm [18] the optimization is carried out sequentially for a single 
sensor, say the 1i   sensor, given that i  sensors have already been placed in their optimal locations. This 
procedure is repeated for 01, ,i N  , where 0N  is the total number of sensors to be placed in the structure. 

The heuristic algorithms have been shown to be effective and provided for several problems near optimal 
solutions [16]. The FSSP algorithm is used here for investigating its effectiveness for the optimal sensor 
placement problem for modal identification.  
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3.3 Properties of the Expected Relative Entropy or K-L Divergence 

The robust information entropy involved in the expected utility function in (9) has exactly the same 
structure as the information entropy derived asymptotically in [18] for nonlinear models. Based on the 
structure of the information entropy measure in (10) it was shown analytically that the information entropy 
follows certain properties [16, 18]. Using the relationship (9) or (11) between the expected K-L divergence 
and the information entropy, one can easily extend the validity of these properties to the expected utility 
function. Specifically, following the reference [18], one can confirm that the expected utility function for 
a given number of sensors placed in the structure increases when one or more additional sensors are placed 
in the structure. As a result, the maximum value of the expected utility function attained for a certain 
number of sensors is a non-decreasing function of the number of sensors. Thus the selection of the optimal 
number of sensors is based only on the level of the information that one can afford loosing when stops 
placing additional sensors in the structure. In addition, spatially correlated prediction error models avoid 
the problem of the redundant information that is usually provided by neighborhood sensors [16]. This is 
true when the distance of the sensors is less than a characteristic length of the contributing mode. In this 
case the spatial correlation length in spatially correlated prediction error models should be selected based 
on the characteristic length of the highest contributing mode.  Spatially uncorrelated prediction error 
models fail to properly consider the redundant information and should be voided since otherwise results 
in sensor clustering.  

4. OPTIMAL SENSOR PLACEMENT FOR MODAL IDENTIFICATION 

4.1 Formulation for Modal Identification 

The optimal experimental design methodology is next implemented in structural dynamics for optimally 
placing the sensors in the structure for modal identification. Considering a linear finite element model of 
a structure, the equations of motion are given by  

 Mu Cu Ku f      (13) 

where M ,  C  and Rn nM   are the mass, damping and stiffness matrices, respectively, nu R   is the 
displacement vector and f   is the forcing vector. Using modal analysis and assuming classically damped 

modes, the response displacement and acceleration vectors are given by u    and u    , 

respectively, where 1[ , , ] Rn m
m      is the matrix of mode shapes involving m  contributing modes 

( m n ) that can be obtained by solving the eigenvalue problem K M    ,   is the diagonal matrix 
of eigenvalues, and mR   is the vector of modal coordinates. The strain vector is given by a similar 

expression E  , where E  depends through the finite element modeling on the elements in the mode 

shape matrix  .  

The problem of estimating the modal coordinate vector   or   using displacement/strain or acceleration 

measurements is investigated in this work. The modal coordinates   or   contain the modal properties 

(modal frequencies, modal damping ratios, participation factors). The objective in modal identification is 
to place sensors (displacement, acceleration and/or strain sensors) so that the information contained in the 
measured data is sufficient to estimate the modal coordinate vectors  or  , depending on the sensor type 

used. Introducing the parameter set    to be either   or   and denoting by 0( ; ) Ng R    the response 
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quantity that is measured by the sensors, one has the following equation between the modal model 
predictions and the parameter set   

 ( ; ) ( ) ( )g L           (14) 

where the matrix 0( ) N nL R   is the observation matrix and maps the n   model DOF to the 0N   measured 

positions. The matrix ( )L   depends on the location vector   defining the locations of the sensors in the 
structure. If the measured positions coincide with the DOF of the model then the matrix ( )L   is comprised 
of zeros and ones. For the general case for which the measured locations do not coincide with the DOF of 
the FE model, the matrix ( )L   depends on the interpolation scheme used to obtain the response within a 
finite element in terms of the finite element nodal responses. The above formulation allows sensors placed 
in any point in the structure, not only at nodal points. Also gives the flexibility to covert the optimization 
problem for estimating the design variables as a continuous optimization problem over the physical 
domain of the structure. For strain measurements the aforementioned analysis is same provided that the 
mode shape matrix   is replaced by the matrix E .  

The model equation in (14) is the same as the one used in (1) so that the expected utility function (9) or 
(11) applies with the FIM given by  

 1( ; ) [ ( ) ] ( ; )[ ( ) ]T
LQ L Ld s d d s d-= F S F  (15) 

in terms of the mode shape components at the measured locations 

Based on the form (15), and using the dimensions of the matrices 0[ ( ) ] m NTL Rd ´F Î , 0 01( ; ) N NRd s ´-S Î  

and 0( ) N mL Rd ´FÎ  in (15), a non-singular FIM matrix ( ; )LQ d s  is obtained only if the number of sensors 

0N  is at least equal to the number of contributing modes m  ( 0N m³ ). For 0N m< , the matrix ( ; )LQ d s  

in (15) is by construction singular and for uniform prior PDF the determinant of the combined matrix 
1( ; )LQ Sd s -+  in (10) will be zero for any sensor configuration. Thus, for 0N m<  the optimal sensor 

location problem cannot be performed for uniform prior PDF. This means that the information content in 
the measured data and the prior is not sufficient to estimate all the parameters simultaneously.  

The Bayesian optimal experimental design formulation yields a nonsingular matrix for 0N m<  only if 

the prior is non-uniform distribution. The non-uniform prior, say Gaussian, yields a Hessian matrix 1S-  
that is added to the Fisher information matrix ( ; )LQ d s  and makes the combined matrix 1( ; )LQ Sd s -+  

non-singular. The information matrix ( ; )LQ d s  in (15) has exactly the same form as the one proposed in 

[4] for designing the optimal sensor location using the EFI algorithm. The difference of the present 
Bayesian formulation to the EFI algorithm is in the use of the prior information for the model parameters 
which permits the design of optimal sensor locations for the case of number of sensors which is less than 
the number of modes. The contribution from the prior is the result of the application of the Bayesian 
optimal experimental design proposed herein based on optimizing the expected K-L divergence. 
Alternatively, Yuen and Kuok [24] has also proposed a non-uniform prior on the information entropy 
measure in order to solve this unidentifiability problem. For uniform prior and unidentifiable case, 
Papadimitriou and Lombaert  [16] proposed the sum of the log of the nonzero eigenvalues in the FIM to 
be maximized instead of the sum of the log of all eigenvalues. Herein these results are generalized to 
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incorporate prior uncertainty in the parameter estimates. This procedure allows to systematically place the 
sensors optimally in the structure even for the unidentifiable case that arises for a small number of sensors.  

4.2 Effect of Prior Uncertainty 

Next a diagonal covariance 2 2
1( , , )mS diag s s   for the Gaussian prior is assumed and the effect of the 

values of the variances is examined. These variances control the prior uncertainty in the values of the 
model parameters. A theoretical result is provided that shows the effect of the assigned prior uncertainties 
on the optimal design.  

For simplicity, the case of optimally placing one sensor is considered first and then generalized for the 

multiple sensor case. In the case of a single sensor, the FIM reduces to the form 2( ; ) T
L i iQ d s s jj-= , 

where 1 2[ , , , ]T
i i i imj = F F F  is a vector of dimension m  that consists of the values of the each mode 

shape at the sensor location denoted here as i . Note that for one sensor the prediction error covariance 
( ; )   is scalar with 2( ; )    . Using the following known results for a square matrix B  and two 

vectors u  and v   

 1( ) (1 ) (B)T Tdet uv v u tB B de    (16) 

the 1det det[ ( ; ) ]LQ Q S     in (10) takes the form  

 2 1 1 2 22 2 1

1

det[ ] ][ ] [1 ( ) [1 ] ( )
m

T T
i i i i k ik

k

det det dQ S S S s et S       



        (17) 

Note that the variance 2
ks   of the k -th parameter (modal coordinate) weights the contribution in the sum 

of the value of the k -th mode shape at the sensor location. The higher the value of the variance 2
ks  , the 

higher the contribution of the k -th mode shape on the det[ ]Q . So it is evident that the optimal design will 

give preferences to the modes that have higher prior uncertainty, i.e. higher 2
ks  values.  

Next we complete the proof for the general case of arbitrary number of 0N  sensors. For this, we use the 

following know result 

 1 1( ) ( ) ( ) ( )T Tdet UWV B det W V B U det W det B    (18) 

Setting for simplicity ( )L dY = F  and using (15) and (10), the 1det det[ ( ; ) ]LQ Q S     takes the form  

 2

2

1 1

1 1

1 1

1

1

2

det[ ] ( ; ) ]

          det[ ( ; ) ]det[ ]det[ ( ; )]

          det ( ; ) det[ ]det[ ( ; )]

        

det[

( ) ( )

|| ( ) || ( ) (  det ( ; ) )

T
k k k

T
k k

T

T

m

k

m

k
k k

s

s

Q S

S S

S

 

   

   



   

      

 

 

 





 

   

 
 



  
 
 



 



 




 



   1 1det[ ]det[ ( ; )]S   

  (19) 
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where ( )k   is the k -th mode shape evaluated at the sensor locations, ( )k   is the unit-normalized 

modeshape, 2|| ( ) ||k   is the Euclidean norm square of the modeshape.  

Equation (17) is a special case of equation (19) when only one sensor is used and   becomes a row vector 
and its columns become scalars. In the multiple sensor case we are dealing with a sum of rank-one matrices 
over the model parameters, where each rank-one matrix ( ) ( )T

k k     is formed from the k -th mode shape 

( )k  , weighted by the corresponding prior variance 2
ks  of that mode. So we see again that, similarly to 

the one sensor case, the Gaussian prior variance 2
ks  acts as weighting factor, this time by giving greater 

weight to the matrix ( ) ( )T
k k     related to the k -th mode. The variance 2

ks   of the k -th mode weights 

the contribution in the sum of the value of the k -th rank-one matrix formed from the k -th mode shape 
that is evaluated at the sensor locations. The higher the value of the variance 2

ks  , the higher the 

contribution of the rank-one matrix of the k -th mode shape on the det[ ]Q . So the optimal design of sensor 
locations again gives preferences to the modes that have higher prior uncertainty.  

5. APPLICATION 

The proposed methodology is used to optimize the location of acceleration sensors placed at the deck level 
of the Metsovo bridge. Numerical results are shown for up to 30 sensors for the spatially uncorrelated and 
spatially correlated prediction error models. The effect of the spatial correlation as well as the selection of 
the uncertainty in the prior distribution on the optimal designs is also investigated. Finally, the optimal 
design of a few number of reference sensors to be used as common sensors in multiple configuration 
setups is illustrated.    

5.1 Bridge Description and FE Model 

The Metsovo bridge of Egnatia Motorway, schematically shown in Figure 1, is crossing the deep ravine 
of Metsovitikos river, 150m over the riverbed. This is the highest bridge of the Egnatia Motorway, with 
the height of the tallest pier equal to 110m. The total length of the bridge is 537m. The bridge has 4 spans 
of length 44.78m, 117.87m, 235m, 140m and 3 piers of which M1(45m) supports the boxbeam 
superstructure through pot bearings (movable in both horizontal directions), while M2(110m) and 
M3(35m) piers connect monolithically to the structure.  

 

 

Figure 1: Longitudinal view of the Metsovo bridge. 
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A detailed FE model of the bridge is created using 3-dimensional tetrahedron quadratic Lagrange finite 
elements. The mesh is chosen to accurately predict the lowest twenty modal frequencies and mode shapes 
of the bridge. The model also considers the interaction with soil by modeling the soil stiffness with solid 
blocks surrounding the piers and abutments. The FE model has 830,000 DOF. The size of the elements in 
the mesh is controlled by the thickness of the deck and piers box-like cross-sections. The typical element 
length of the order of the thickness of the deck cross-section. The complex 3D geometry of the bridge was 
designed in SolidWorks and the FE model was created and solved in COMSOL Multiphysics by importing 
the 3D geometry from SolidWorks. The modulus of elasticity for the concrete were taken from design 
considerations to be 37e9 Pa and 34e9 Pa for the deck and the piers, respectively. The modulus of elasticity 
for the solid blocks was taken to be 9e9 Pa.The stiffness and mass matrices of the finite element model 
are used to obtain the mass normalized modeshapes to be used in the optimal sensor placement 
methodology.   

5.2 Optimal Sensor Placement  

The purpose of the OED is to optimally locate a number of acceleration sensors such that one gets the 
most informative data for identifying the lowest 10 modes. Using the FE model, the lowest 10 mode shapes 
needed in the design of the optimal sensor locations were computed and stored. These modes consist of 5 
transverse modes, with mode shapes that deform the bridge and deck in the transverse direction, and 5 
vertical modes mode, with mode shapes that bend the deck in the vertical direction. The transverse mode 
numbers are {1, 2, 4,6,8}, while the bending mode number are {3,5,7,9,10} . The optimal location of 
sensors are obtained by maximizing the expected utility function or minimizing the information entropy. 
Herein, results will be presented in terms of the information entropy measure. It should be noted that in 
our case the number of parameters (modal coordinates) is 10N m   .  

5.2.1 Continuous Optimization in Parent Domain  

Due to the fact that measurements on the bridge deck have to be taken without traffic interruptions, the 
sensors in the structure are only allowed to be placed along the pedestrian sidewalks (left and right). For 
demonstration purposes, in this study it will be assumed that sensors are placed along the one sidewalk 
marked in Figure 2 with red line. The line along the sidewalk over which sensors can be placed is a curved 
one and in order to perform the optimization problem along the curved line we develop a mapping of the 
curved line in a much simpler parent domain of a straight line. Each point in the physical curved line is 
mapped to a point in the straight parent line. To introduce such a mapping one can follow concepts 
developed in finite element analysis to map an arbitrary one-dimensional element in space in a parent 
element of specified length. It should be noted that the curved one-dimensional domains (red line) in 
Figure 2 consists of the straight elements that are the vertices of the neighbor tetrahedral finite elements 
used to model the bridge. So these straight vertices are mapped in the sequence that are encountered from 
left to the right edge of the bridge to a parent element so that the left corner of the red curve is mapped to 
the parent location 0, while the right corner of the red curve is mapped to the parent location 1. Specifically 
the 0m to 537m curved line along the deck is mapped to the parent domain from 0 to 1. 

To account for the different type of sensors that can be placed on the physical structures, in our case 
sensors measuring in the vertical and the transverse directions, the physical curved line with transverse 
sensors placed on it are mapped to a parent element from 0 to 1, while the physical curved line with vertical 
sensors placed on it are mapped to a parent element from 1 to 2. In this way one can efficiently handle the 
two types of transverse and vertical sensors without the need to distinguish them during the optimization. 
The optimization is performed in the parent domain with the design variables, indicating the location of 
the sensors in the parent domain, to vary from 0 to 2. A design value inside the parent domain [0,1] 
corresponds to a transverse sensors which is mapped through the aforementioned mapping to a point on 
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the physical domain (red curve) in Figure 2. Similarly, a design value inside the parent domain [1,2] 
corresponds to a vertical sensors which is mapped to a point on the physical domain (red curve) in Figure 
2.  

The mode shape value at a point in the parent domain is obtained by the mode shape value at the 
corresponding point in the physical domain. Consider the mapping of points from 0 to 1 in the parent 
domain to the physical domain. Since the mapped point in the physical domain might not correspond to a 
node of the finite element model, the mode shape value is obtained by interpolation using the mode shape 
values at the two neighboring nodes of that point in the transverse direction. A similar procedure is used 
for points between 1 and 2 in the parent domain to find the mode shape component in the vertical direction.   

  

 

 

 

Figure 2: Optimization along pedestrian walkway of the deck. 

 

Using this mapping strategy the optimization is performed in a more sophisticated than what was used in 
the past. Instead of performing multiple optimizations for one sensor at a time which is predetermined to 
be either a transverse or vertical sensor, now it is allowed to optimize for several sensors simultaneously 
on the bridge pedestrian sideway, without predetermining the types of the sensors. Instead, it is left for the 
optimization to decide which of the sensors will be transverse and which will be vertical, depending on 
what region they lie in the parent domain.  

So the optimization proceeds as follows. The design vector   is a vector with as many elements as number 
of uniaxial sensors. Each element of this vector describes both the location and the type (transverse or 
vertical) of a sensor. Each element of the design vector   is a number on the interval [0 2]. This effectively 
allows for the optimization of many sensors simultaneously, which includes making the decision about 
the types of sensors as well along with their location. This is more realistic and gives more freedom to the 
approach than predetermining how many sensors of each type one should include in  . The 
aforementioned concept can be extended to design a combination of different sensor types such as 
acceleration, displacement and strain sensors.  
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5.2.2 Numerical Results for Spatially Uncorrelated Prediction Error Model 

An uncorrelated prediction error model is used with diagonal covariance matrix 
0

2( ; ) NI    , where  
0 0

0

N N
NI R   is the identity matrix, with the value of the single prediction error parameter chosen to be 

0.01  . A Gaussian prior with relatively large uncertainties is used. As a result, the posterior covariance 
matrix ( ; )LQ    is non-singular and the design can proceed for any number of sensors. The covariance 

matrix of the Gaussian prior is set to 310 mS I , with 2 2 3
1 10ms s   .   

Results for up to 0 9N   sensors are first obtained. Note that in this case the number of sensors is less than 

the number of modes ( 10m  ) and so the FIM is singular. The FSSP method is used to obtain the optimal 
sensor locations. It should be noted, however, that the sensor locations obtained by the heuristic FSSP 
method are verified that are the global optima, also obtained by the CMA-ES global optimizer [27].  

The optimal location of the first sensor correspond to the minimum of the information entropy. The 
information entropy as a function of the location of the sensor is drawn in Figure 3(A) at the parent domain. 
It can be seen that there are 9 local minima. Figure 3(B) shows the contour plots of the information entropy 
as a function of two sensor locations in the parent domain. A large number of local optima is also observed 
(blue color). The number of optima are expected to increase as the dimension of the design space increases. 
Figures 3(A) and 3(B) confirm that there is a large number of local optima and so gradient-based 
optimization methods will be trapped to a local optimum and will not be able to obtain a global optimum. 
Stochastic algorithms such as CMA-ES have much higher chances to pinpoint the global optimum.  

For the case of optimizing the location of the first sensor, a vertical sensor was obtained rather than a 
transverse one. The two minima at 1.58 and 1.91 in the parent domain in Figure 3(A) are smaller than all 
the rest, which implies that for the 1st sensor is best to be a vertical sensor in one of these two locations 
which correspond to distances on the bridge of 310m and 487m, respectively, from the left end. The 
minimum at 1.91 (487m) is slightly smaller, but the difference is negligible for practical purposes. 

Another interesting observation in Figure 3(A) is that at the two ends of the bridge (at points 0, 1 and 2 in 
the parent domain) the value of the posterior entropy is 48.72, which is exactly the information entropy of 
the Gaussian prior. This makes sense, because in these points the mode shapes have zero components and 
the FIM is zero, and therefore the only contribution to the posterior comes from the prior. There are also 
other points which result in the posterior entropy being almost equal to the prior entropy, which correspond 
to vertical sensors being placed in points of zero vertical response (locations 1.08, 1.3 and 1.74 in the 
parent domain) for all vertical mode shapes. These are points in the deck that are above the piers where 
the vertical motion of the bridge is almost restrained. As one would intuitively expect, the information 
gain from these designs (which is the difference between the prior and posterior entropies) is zero.  
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(A)                                                                           (B) 

 

 

                                     (C)       (D) 

Figure 3: Information entropy vs the location of a sensor in parent domain (A) 1st sensor, (B) 1st and 2nd 
sensor (contour plots), (C) 4th sensor, and (D) 5th sensor.  

 

The information entropy as a function of the location of the fourth sensor in the parent domain given that 
the first three sensors have been placed in their optimal position is shown in Figure 3(C). Similar plot for 
the information entropy as a function of the position of the 5th sensor given that the first four sensors have 
been placed in their optimal position, is shown in Figure 3(D). The optimal location of the first nine sensors 
are shown in Figure 4(A) and 4(B) for both the transverse and vertical sensors. Also, information of the 
optimal locations of sensors and the corresponding information entropy values is given in Table 1.  
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                                       (A)         (B) 

Figure 4: Optimal locations of (A) transverse sensors, and (B) vertical sensors (Case of 9 sensors with 
uncorrelated prediction error). The symbol x denotes the location of the piers along the deck. 

 

Table 1: Optimal location in the physical domain and minimum information entropy for the first nine 
sensors ( 0N m ). V=Vertical, T=Transverse.  

Sensor 1 2 3 4 5 6 7 8 9 

Type V V V V T T T T T 

Optimal 
Location (m) 

487 310 257 85 466 267 69 348 166 

Information 
Entropy 

47.86 47.03 46.26 45.57 44.89 44.23 43.58 43.02 42.63 

 

Note that the optimal location of the first two sensors is made up of the location of the global and the next 
local optimum predicted in Figure 3(A). Also, from the results in Figure 4(B) the first 4 sensors are vertical 
sensors. This is because, as can be seen from the Figures 4(A) and 4(B), vertical modes have slightly 
higher displacements and therefore contribute more than the transverse modes to the FIM, and therefore 
the posterior covariance matrix. Also the vertical modes have more “convenient” points where several 
modes have high responses compared to the transverse modes. These result in preferring the vertical 
sensors compared to the transverse modes. Note that all modes are treated equally by selecting the prior 
uncertainty to be the same for all modal coordinates. Finally, results in Figure 4(A) suggest that the last 5 
sensors (5th to 9th sensors) are selected to measure in the transverse direction.  

From the results in Figure 3(C) of the information entropy as a function of the location of the 4th sensor, 
given that the first 3 sensors are placed at their optimal location, it is noticed that the vertical sensor at 85 
m is slightly preferred from the three transverse sensors at 69m, 267m and 466m since the minimum value  
of 45.57 in the information entropy for the vertical sensor is slightly smaller than the local minimum value 
of 45.58 for the information entropy for the three transverse sensors. From the results in Figure 3(D) of 
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the information entropy as a function of the location of the 5th sensor, given that the first 4 sensors are 
placed at their optimal location, it can be observed that any of the locations 69, 267 and 466 m for a 
transverse sensor are candidates. These sensors locations are the optimal sensor locations for the 5th, 6th 
and 7th sensor. The optimal sensors for the 8th and 9th sensor are transverse ones, with optimal locations 
shown in Figure 4(A) and Table 1.  

Observing the optimal sensor locations in relation to the mode shapes drawn in Figures 4(A) and 4(B), 
one should note that the results are reasonable for placing sensors in the suggested vertical or transverse 
locations since in these locations the mode shape components correspond, in general, to their higher 
values.  

For up to nine sensors it is observed that placing two or more sensors in the same position corresponds to 
the worst sensor location. This is confirmed also by the contour plots in Figure 3(B) where the placing of 
the two sensors in the same position is not preferred (red colors). Also it is confirmed by the plots in Figure 
3 where it is clear that a new sensor location when coincide with an already placed sensor location gives 
large values of the information entropy as compared to the optimal one. So in the singular FIM case with 

0N m , the problem of sensor clustering [16] due to uncorrelated prediction error does not occur.  

The optimal location and type (transverse or vertical) of the next 11 sensors (10th to 20th) is also considered. 
The design is performed using the FSSP algorithm. However, for selected number of sensors, the accuracy 
of the results obtained from the FSSP algorithm is confirmed by running also the CMA-ES algorithm. 
Both algorithms provide the same estimates. The information entropy as a function of the location of the 
10th sensor given that the first 9 sensors are placed at their optimal positions (shown in Table 1) is presented 
in Figure 5(A). Figure 5(B) gives similar information but for optimizing the location of the 19th sensor. 
The optimal sensor locations for the sensors from 10th to 20th, their type (vertical or transverse) and the 
minimum information entropy are also given in Table 2 and in Figure 6.    

 

 

                                       (A)                   (B) 

Figure 5: Information entropy vs the location of a sensor in parent domain (A) 10th sensor, (B) 19th sensor.  
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Table 2: Optimal location in the physical domain and minimum information entropy for the 10th up to the 
20th sensor ( 0N m ). V=Vertical, T=Transverse.  

Sensor 10 11 12 13 14 15 16 17 18 19 20 

Type V V V V T T T T T V V 

Optimal 
Locatio (m) 

487 310 251 85 251 69 460 348 160 482 310 

Information 
Entropy 

42.33 42.04 41.75 41.47 41.19 40.91 40.64 40.39 40.17 39.98 39.80 

 

It is clear from the Figure 5(A) that the optimal location of the 10 sensor coincides with the location of 
the 1st sensor. Actually the information entropy as function of the location of the 10th sensor is qualitatively 
similar to the information entropy for one sensor in Figure 3(A) as a function of its location. Comparing 
Figures 5(A) and 3(A), the local/global optimal appear at the same locations which suggests that the 
optimal locations of the next nine sensors will be close to the optimal locations of the first nine sensors. 
This is confirmed by comparing also the results in Table 2 with the results in Table 1. Comparisons clearly 
demonstrate (see also Figure 6) that the optimal locations of the sensors 9th to 20th coincide or they are 
very close to the optimal locations estimated for the first 9 sensors. This sensor clustering is due to the 
incorrect assumption of the spatially uncorrelated prediction errors [16]. However, it seems that the sensor 
design obtained with uncorrelated prediction errors are very reasonable and intuitive for the first nine 
sensors which correspond to the case of singular FIM with 0N m .  To correct the problem of sensor 

clustering for more than 9 sensors one has to introduce spatial correlation in the prediction errors.  

 

 

                                      (A)        (B) 

Figure 6: Optimal locations of (A) transverse sensors, and (B) vertical sensors (Case of 20 sensors with 
uncorrelated prediction error). The symbol x denotes the location of the piers along the deck. 
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5.2.3 Numerical Results for Spatially Correlated Prediction Error Model 

A spatially correlated prediction error model is next assumed. For this the covariance ( ; )    of the 
prediction error at the sensor locations is selected to be non-diagonal with the ( , )i j  element of the form 

2( ; ) ( )ij i jR       , where ( )i jR    is the spatial correlation structure of the prediction error, i  

and j  are the locations of the i   and j   sensors, and 2   is the strength of the prediction error. An 

exponentially decaying correlation structure of the form ( ) exp( | | / )i j i jR          is selected, where 

  is the correlation length.  

 

(A)                                                                               (B) 

 

                                       (C)                                                                             (D)         

Figure 7: Optimal locations of (A) transverse sensors ( 10m  ), (B) vertical sensors ( 10m  ), (C) 
transverse sensors ( 20m  ), and (D) vertical sensors ( 20m  ) (Case of 20 sensors with spatially 
correlated prediction error). The symbol x denotes the location of the piers along the deck. 
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for two different correlation length parameters (or correlation functions in general) to be used for the 
transverse and vertical sensors, respectively. In the numerical results that follow, the correlation 
parameters are chosen to be 0.01   and 10trans vert m    or 20trans vert m   . 

Optimal sensor placement results for the correlated prediction error models are shown in Figure 7 for two 
different correlation length of 10 m and 20 m respectively. The Gaussian prior is selected to be the same 
as in the uncorrelated prediction error case. Results have been derived using the FSSP algorithm and their 
accuracy has been also confirmed for representative sensor cases using the CMA-ES algorithm. 
Comparing with the results of the uncorrelated case in Figure 6 it can be observed that the optimal sensor 
locations for the first 9 sensors are the same as the uncorrelated prediction error case. For more than 9 
sensors, the sensor clustering problem is not present in the spatially correlated prediction error case. The 
optimal locations of sensors 10th to 20th are not close to the locations obtained for the first 9 sensors. In 
fact they are more uniformly distributed in some of the areas of the bridge deck. Comparing Figures 7(A,B) 
with Figures 7(C,D) it can be observed that the spacing of the sensors tend to increase as one increases 
the correlation length from 10m to 20m. This is consistent with the theoretical results obtained in [16]. 

In Figure 8 the optimal information entropy as a function of the number of sensors is shown for the 
uncorrelated and correlated prediction error cases and for 1 up to 30 sensors. The 0 case sensor corresponds 
to the case where no sensors are placed and so the information entropy is that of the Gaussian prior PDF. 
As expected, we notice that the optimal value of the information entropy for a given number of sensors 
decreases as the number of sensors increases. For up to 9 sensors the entropies are identical between the 
uncorrelated and correlated prediction error models. From the 10th sensor and on, the correlated prediction 
error models lead to more information entropy (less information) and this entropy increases with the 
correlation length. This is due to the fact that the information provided by neighbor sensors within the 
correlation length assumed is not significantly different and so this results in a drop of the total information 
for the same number of sensors. Also, the curves with high correlation suggest that the information 
provided by adding sensors in the structure is decreasing and eventually after a number of sensors there is 
no significant information offered by additional sensors. This plot can be used to decide on the number of 
sensors to be placed in the structure, given the correlation length. The uncorrelated prediction error models 
provide misleading results since continuing adding sensors in the structure has the effect of gaining 
additional information, independent of the number of added sensors, which is counter-intuitive. 

 

 

Figure 8: Optimal information entropy vs number of sensors. 
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5.3 Effect of Prior Uncertainty on Optimal Sensor Placement 

The results obtained so far correspond to an isotropic Gaussian prior where all prior uncertainties in the 
parameters were selected to be the same. This gives equal weight to all parameters as far as the prior is 
concerned, so there is no preference of a specific mode over another. The Gaussian prior covariance matrix 
is a modelling choice that is user preference. Therefore it can be fully manipulated according to the needs. 
Equation (19) suggests that by giving larger prior uncertainties to some specific modes we are essentially 
giving more weight in these modes in the selection of the optimal design. The insightful result (19) states 
that a Gaussian prior can be used as a means to perform more sophisticated OED, where we give 
preference to some selected modes over others. Different Gaussian prior variances for the different modes 
get transferred to the posterior and result in different optimal designs, favoring the identification of modes 
with the largest prior variances. The Bayesian framework for OED provides the means to fully quantify 
this preference of some modes over others through the prior. 

In order to illustrate this, the simple case of one sensor is examined. We would like to give more weight 
to the identification of the modal coordinates of the transverse modes. For this we lower the variances of 
the bending modes from 1000 to 100, and we keep the variances of the transverse modes at 1000. The 
information entropy as a function of the position of the 1st sensor is shown in Figure 9(A). We see that the 
optimal design for the 1st sensor is now a transverse sensor in one of the already found optimal locations 
for transverse sensors, shown in Figure 3(D). In fact, the plot for one sensor in Figure 9(A) is now 
qualitatively very similar to the plot of the 5th sensor shown in Figure 3(D), where the first transverse 
sensor appears as optimal. With this change in the prior variances giving weight to the transverse modes, 
the optimal designs have a preference for the transverse sensors now to show up as the 1st sensor and not 
the 5th.  

 

 

                                      (A)        (B) 

Figure 9: (A) Information entropy of 1st sensor vs location in parent domain using  Gaussian prior variance 
2 1000s   for transverse modes and 2 100s   for vertical modes. (B) Optimal locations for 1st sensor for 

prior variance of 1st mode equal to 500, 1000 and 2000. All other prior variances equal to 100.  
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of the first modal coordinate to different values 2
1 300s  , 500, 1000 and 2000. For 2

1 300   or for smaller 

values of 2
1s , the optimal sensor is selected to be a vertical sensor. For values of 2

1s  500, 100 and 2000, 

the transverse sensor is selected. The location of the transverse sensor for these higher values is shown in 
Figure 9(B). It is clear that increasing the value of 2

1s  the sensor is located closer to the location where the 

first mode has its maximum absolute deflection. This is consistent with the theoretical result in Section 
4.2 which states that increasing the prior variance of the first mode gives more and more weight to the 
identification of the 1st mode, making it more important in the optimal sensor placement design. 

5.4 Optimal Sensor Placement of Reference Sensors 

The OED is next used to address the important problem of selecting the optimal location of a few reference 
sensors in a multiple sensor configuration set up experiment conducted with limited number of reference 
and roving sensors in order to obtain the modal frequencies and assemble the mode shapes from the 
multiple setups. The number of reference sensors is in most cases significantly smaller than the number 
of modes to be identified. It is important in this case that the reference sensors, common in most setups, 
contain the maximum possible information for all modes that are planned to be identified. Wrong locations 
of the reference sensor may degrade the modal information for one or more modes, degrading the accuracy 
of the corresponding assembled mode shape since such accuracy is based solely on the information 
contained in the reference sensors.  

The effectiveness of the methodology is illustrated by designing the optimal location of one vertical and 
one transverse reference sensor for identifying the lowest 10 modes of the bridge. It is clear from the 
results in Figure 3(A) that the best location of the 1st sensor is at 487m measuring along the vertical 
direction. This is also taken as the location of the vertical reference sensors. Figure 4(B) demonstrates that 
the design of the reference sensor at 487m is rational since the deflection of all five vertical mode shapes 
is high. To design the location of the 1st transverse reference sensor one could use the results in Figure 
9(A), obtained for the transverse modes after selecting the prior uncertainty to give in the optimal design 
preferential treatment to these modes over the vertical modes. It is clear that the transverse reference sensor 
can be selected as the location 268m (parent location 0.5) that corresponds to the minimum information 
entropy in Figure 9(A). From Figure 4(A) it is seen that the transverse reference sensor location 268m 
correspond to high deflections of four out of the 5 transverse modes. One of the transverse modes has 
relatively small deflection, a problem that arises from the trade-off that has to be made in the design to get 
maximum information from all five modes. A solution to this problem is to place a second transverse 
sensor on the structure at position 70m (the second best local optimum in Figure 4(A). In practice using 
more references sensors that the minimum required (two in this case) is a good way to make sure that 
important information from reference sensors will not be lost. Concluding the vertical and transverse 
reference sensors in experiments with multi sensor configuration setups could be 487m and 268m (and/or 
70m), respectively.  

6. CONCLUSIONS 

An optimal sensor placement design for modal identification based on the expected K-L divergence as a 
measure of the information contained in the data is shown to be equivalent to the optimal sensor placement 
design based on the information entropy proposed in [18]. Using non-uniform priors, the Bayesian OED 
allows for optimal sensor placement to be performed even for the case of number of sensor are less than 
the number of identified modes. This is important when designing the optimal location of very few number 
of reference sensors for the purpose of assembling the model shapes using reference and roving sensors 
in multiple sensor configuration setups. In this study the effect of the Gaussian prior on the optimal design 
was thoroughly investigated. Insightful analytical expressions were derived to show that larger uncertainty 
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in the prior of a subset of modal coordinates can be used to give preference in this subset in the optimal 
design of the sensor locations. The prior variances for all modes to be identified can be altered to weight  
the importance of different modes in the design, favoring a number of modes against the rest of the modes. 
The prior is the users’ choice and it can be used in different ways to achieve different results, which is one 
of the strengths of Bayesian OED.  

The methodology was applied to a 537m long reinforced concrete bridge in order to design the optimal 
sensor configuration for identifying the lowest 10 modes. The optimization was performed in the 
continuous space of design variable, through appropriate mapping from the physical space to a parent 
domain. A large number of local optima were observed that result in a challenging optimization problem. 
The problem is overcome using computationally efficient heuristic FSSP algorithms. The accuracy of the 
FSSP algorithm was confirmed using the computational demanding CMA-ES algorithm.  A thorough 
investigation of the effect of correlated and uncorrelated prediction error models was also performed. The 
design for a smaller number of sensors than the number of modes was shown to be the same for spatially 
uncorrelated and correlated prediction error models. Rational and intuitive results were obtained. For more 
sensors than the number of modes the spatially correlated prediction error model give intuitively 
reasonable results, avoiding sensor clustering observed for uncorrelated prediction error models.   

The proposed method offers a useful decision tool for designing the sensor locations in a structure in order 
to obtain the maximum information for reliable modal identification of civil infrastructures and industrial 
facilities using vibration measurements.  
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